Functional Modelling and Classification of Longitudinal Data*
نویسنده
چکیده
We review and extend some statistical tools that have proved useful for analysing functional data. Functional data analysis primarily is designed for the analysis of random trajectories and infinite-dimensional data, and there exists a need for the development of adequate statistical estimation and inference techniques. While this field is in flux, some methods have proven useful. These include warping methods, functional principal component analysis, and conditioning under Gaussian assumptions for the case of sparse data. The latter is a recent development that may provide a bridge between functional and more classical longitudinal data analysis. Besides presenting a brief review of functional principal components and functional regression, we develop some concepts for estimating functional principal component scores in the sparse situation. An extension of the so-called generalized functional linear model to the case of sparse longitudinal predictors is proposed. This extension includes functional binary regression models for longitudinal data and is illustrated with data on primary biliary cirrhosis.
منابع مشابه
مدلسازی توام دادههای بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی
Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...
متن کاملExtension of Logic regression to Longitudinal data: Transition Logic Regression
Logic regression is a generalized regression and classification method that is able to make Boolean combinations as new predictive variables from the original binary variables. Logic regression was introduced for case control or cohort study with independent observations. Although in various studies, correlated observations occur due to different reasons, logic regression have not been studi...
متن کاملResources classification using fractal modelling in Eastern Kahang Cu-Mo porphyry deposit, Central Iran
Resources/reserves classification is crucial for block model creation utilised in mine planning and feasibility study. Selection of estimation methods is an essential part of mineral exploration and mining activities. In other word, resources classification is an issue for mining companies, investors, financial institutions and authorities, but it remains subject to some confusion. The aim of t...
متن کاملIncreasing the accuracy of the classification of diabetic patients in terms of functional limitation using linear and nonlinear combinations of biomarkers: Ramp AUC method
The Area under the ROC Curve (AUC) is a common index for evaluating the ability of the biomarkers for classification. In practice, a single biomarker has limited classification ability, so to improve the classification performance, we are interested in combining biomarkers linearly and nonlinearly. In this study, while introducing various types of loss functions, the Ramp AUC method and some of...
متن کاملModelling of the kaolin deposits and reserve classification challenges of Charentes Basin, France
The kaolinitic clays have been exploited for more than a hundred years, in the western part of the Charentes Basin, France, and belong to a paleo-deltaic network. The recent deposits are relatively richer in alumina in comparison with the older ones. The genesis of the kaolin deposits of the Charentes Basin follows simple geological rules, but their detailed geometry has a great complexity, rei...
متن کامل